Equivariant \mathcal{D}-modules on varieties with finitely many orbits

András Cristian Lőrincz

Max Planck Institute for Mathematics in the Sciences

August 2019, Zürich
Outline

1. Equivariant \mathcal{D}-modules
2. Example: the space of $m \times n$ matrices
3. Spherical varieties
4. Local cohomology
Basic notation

- Let X be complex, irreducible, smooth algebraic variety.
Basic notation

- Let X be complex, irreducible, smooth algebraic variety.
- Let \mathcal{D}_X the sheaf of differential operators on X.
Let X be complex, irreducible, smooth algebraic variety.

Let \mathcal{D}_X the sheaf of differential operators on X.

When $X = \mathbb{C}^d$, \mathcal{D}_X is the Weyl algebra

$$\mathcal{D}_X = \langle x_1, \ldots, x_d, \partial_1, \ldots, \partial_d \rangle,$$

with relations $[\partial_i, x_j] = \delta_{ij}$, where δ_{ij} is the Kronecker delta.
Let X be complex, irreducible, smooth algebraic variety.

Let \mathcal{D}_X the sheaf of differential operators on X.

When $X = \mathbb{C}^d$, \mathcal{D}_X is the Weyl algebra

$$\mathcal{D}_X = \langle x_1, \ldots, x_d, \partial_1, \ldots, \partial_d \rangle,$$

with relations $[\partial_i, x_j] = \delta_{ij}$, where δ_{ij} is the Kronecker delta.

A \mathcal{D}-module is throughout a coherent left \mathcal{D}_X-module.
Equivariant \mathcal{D}-modules

- Assume G is a connected affine algebraic group acting on X.

$$m : G \times X \rightarrow X$$
Equivariant \mathcal{D}-modules

Assume G is a connected affine algebraic group acting on X.

$$m : G \times X \to X$$

\mathcal{D}_X-module \mathcal{M} is (strongly) equivariant if we have an isomorphism $m^*(\mathcal{M}) \cong p_2^*(\mathcal{M})$ of $\mathcal{D}_{G \times X}$-modules satisfying the usual cocycle condition.
Equivariant \mathcal{D}-modules

- Assume G is a connected affine algebraic group acting on X.

 \[m : G \times X \to X \]

- \mathcal{D}_X-module \mathcal{M} is (strongly) equivariant if we have an isomorphism $m^*(\mathcal{M}) \cong p_2^*(\mathcal{M})$ of $\mathcal{D}_{G \times X}$-modules satisfying the usual cocycle condition.

- Differentiating the action of G on X gives vector fields on X, so a map $\mathfrak{g} \to \Gamma(X, \mathcal{D}_X)$. When X is affine, equivariance of a \mathcal{D}_X-module means that the action of \mathfrak{g} via $\mathfrak{g} \to \mathcal{D}_X$ can be integrated to an algebraic G-action.
Equivariant \mathcal{D}-modules

- Assume G is a connected affine algebraic group acting on X.

 \[m : G \times X \rightarrow X \]

- \mathcal{D}_X-module \mathcal{M} is (strongly) \textit{equivariant} if we have an isomorphism $m^*(\mathcal{M}) \cong p_2^*(\mathcal{M})$ of $\mathcal{D}_{G \times X}$-modules satisfying the usual cocycle condition.

- Differentiating the action of G on X gives vector fields on X, so a map $g \rightarrow \Gamma(X, \mathcal{D}_X)$. When X is affine, equivariance of a \mathcal{D}_X-module means that the action of g via $g \rightarrow \mathcal{D}_X$ can be integrated to an algebraic G-action.

- \mathcal{O}_X is equivariant, but \mathcal{D}_X is not!
Equivariant \mathcal{D}-modules

Assume G is a connected affine algebraic group acting on X.

\[m : G \times X \to X \]

\mathcal{D}_X-module \mathcal{M} is (strongly) equivariant if we have an isomorphism $m^*(\mathcal{M}) \cong p_2^*(\mathcal{M})$ of $\mathcal{D}_{G \times X}$-modules satisfying the usual cocycle condition.

Differentiating the action of G on X gives vector fields on X, so a map $g \mapsto \Gamma(X, \mathcal{D}_X)$. When X is affine, equivariance of a \mathcal{D}_X-module means that the action of g via $g \mapsto \mathcal{D}_X$ can be integrated to an algebraic G-action.

\mathcal{O}_X is equivariant, but \mathcal{D}_X is not!

Let $\text{mod}_G(\mathcal{D}_X)$ denote the full subcategory of equivariant \mathcal{D}-modules. It is closed under subquotients.
Now we consider the situation when G acts on X with \textit{finitely many} orbits O_0, O_1, \ldots, O_n, where $\overline{O_n} = X$.
Now we consider the situation when G acts on X with\textit{ finitely many} orbits O_0, O_1, \ldots, O_n, where $\overline{O_n} = X$.

- If $\mathcal{M} \in \text{mod}_G(\mathcal{D}_X)$, then \mathcal{M} is regular holonomic.
The category $\text{mod}_G(\mathcal{D}_X)$ of equivariant \mathcal{D}-modules

Now we consider the situation when G acts on X with \textit{finitely many} orbits $O_0, O_1, \ldots O_n$, where $\overline{O_n} = X$.

- If $\mathcal{M} \in \text{mod}_G(\mathcal{D}_X)$, then \mathcal{M} is regular holonomic.
- For each orbit $O \cong G/H$, we have $\text{mod}_G(\mathcal{D}_O) \cong \text{Rep}(H/H^0)$ (here H/H^0 is the component group of O).
Now we consider the situation when G acts on X with \textit{finitely many} orbits $O_0, O_1, \ldots O_n$, where $O_n = X$.

- If $\mathcal{M} \in \text{mod}_G(D_X)$, then \mathcal{M} is regular holonomic.
- For each orbit $O \cong G/H$, we have $\text{mod}_G(D_O) \cong \text{Rep}(H/H^0)$ (here H/H^0 is the component group of O).
- Hence, there are finitely many simples in $\text{mod}_G(D_X)$, parametrized by (O_p, V), with $0 \leq p \leq n$ and V an irrep. of the component group of O_p.
The category $\text{mod}_G(\mathcal{D}_X)$ of equivariant \mathcal{D}-modules

Now we consider the situation when G acts on X with *finitely many* orbits O_0, O_1, \ldots, O_n, where $O_n = X$.

- If $\mathcal{M} \in \text{mod}_G(\mathcal{D}_X)$, then \mathcal{M} is regular holonomic.
- For each orbit $O \cong G/H$, we have $\text{mod}_G(\mathcal{D}_O) \cong \text{Rep}(H/H^0)$ (here H/H^0 is the component group of O).
- Hence, there are finitely many simples in $\text{mod}_G(\mathcal{D}_X)$, parametrized by (O_p, V), with $0 \leq p \leq n$ and V an irrep. of the component group of O_p.
- The category $\text{mod}_G(\mathcal{D}_X)$ is equivalent to the category of finite-dimensional representations of a quiver (with relations) [Vilonen ‘94] [L., Walther ‘19].
The case of $m \times n$ matrices

Take $m \geq n \geq 1$ and let $X = \mathbb{C}^{m \times n}$ be space of $m \times n$ matrices, equipped with the action of the $G = \text{GL}_m(\mathbb{C}) \times \text{GL}_n(\mathbb{C})$.
The case of $m \times n$ matrices

Take $m \geq n \geq 1$ and let $X = \mathbb{C}^{m \times n}$ be space of $m \times n$ matrices, equipped with the action of the $G = \text{GL}_m(\mathbb{C}) \times \text{GL}_n(\mathbb{C})$.

- $X = \bigcup_{p=0}^{n} O_p$, where O_p is the G-orbit of matrices of rank p.
The case of $m \times n$ matrices

Take $m \geq n \geq 1$ and let $X = \mathbb{C}^{m \times n}$ be space of $m \times n$ matrices, equipped with the action of the $G = \text{GL}_m(\mathbb{C}) \times \text{GL}_n(\mathbb{C})$.

- $X = \bigcup_{p=0}^{n} O_p$, where O_p is the G-orbit of matrices of rank p.
- We have the simples D_0, D_1, \ldots, D_n in $\text{mod}_G(D_X)$ corresponding to orbits (all stabilizers are connected). Here $D_0 = D_X/(x_1, \ldots, x_d) =: E$ and $D_n = O_X =: S$.
The case of $m \times n$ matrices

Take $m \geq n \geq 1$ and let $X = \mathbb{C}^{m \times n}$ be space of $m \times n$ matrices, equipped with the action of the $G = \text{GL}_m(\mathbb{C}) \times \text{GL}_n(\mathbb{C})$.

- $X = \bigcup_{p=0}^{n} O_p$, where O_p is the G-orbit of matrices of rank p.
- We have the simples D_0, D_1, \ldots, D_n in mod$_G(D_X)$ corresponding to orbits (all stabilizers are connected). Here $D_0 = D_X/(x_1, \ldots, x_d) =: E$ and $D_n = O_X =: S$.
- When $m \neq n$, then the category mod$_G(D_X)$ is semi-simple.
The square case

When $m = n$, the roots of the Bernstein-Sato polynomial of the determinant give a filtration in $\text{mod}_G(\mathcal{D}_X)$:

$$0 \subset S \subset \langle \det^{-1} \rangle_{\mathcal{D}} \subset \cdots \subset \langle \det^{-n} \rangle_{\mathcal{D}} = S_{\det}$$
The square case

When $m = n$, the roots of the Bernstein-Sato polynomial of the determinant give a filtration in $\text{mod}_G(\mathcal{D}_X)$:

$$0 \subset S \subset \langle \det^{-1} \rangle_\mathcal{D} \subset \cdots \subset \langle \det^{-n} \rangle_\mathcal{D} = S_{\det}$$

Simples are given by the successive quotients ($0 \leq p < n$):

$$D_p \cong \frac{\langle \det^{p-n} \rangle}{\langle \det^{p+1-n} \rangle}, \quad D_n = S.$$
The square case

When \(m = n \), the roots of the Bernstein-Sato polynomial of the determinant give a filtration in \(\text{mod}_G(\mathcal{D}_X) \):

\[
0 \subset S \subset \langle \det^{-1} \rangle_\mathcal{D} \subset \cdots \subset \langle \det^{-n} \rangle_\mathcal{D} = S_{\det}
\]

Simples are given by the successive quotients \((0 \leq p < n)\):

\[
D_p \cong \frac{\langle \det^p - \det^{p+1-n} \rangle}{\langle \det^{p+1-n} \rangle}, \quad D_n = S.
\]

The category \(\text{mod}_G(\mathcal{D}_X) \) is given by the quiver

\[
\widehat{\mathbb{A}_n} : \quad (0) \leftrightarrow (1) \leftrightarrow \cdots \leftrightarrow (n - 1) \leftrightarrow (n),
\]

where all the 2-cycles are zero. [L., Walther ‘19]
When \(m = n \), the roots of the Bernstein-Sato polynomial of the determinant give a filtration in \(\text{mod}_G(\mathcal{D}X) \):

\[
0 \subsetneq S \subsetneq \langle \det^{-1} \rangle_\mathcal{D} \subsetneq \cdots \subsetneq \langle \det^{-n} \rangle_\mathcal{D} = S_{\det}
\]

Simples are given by the successive quotients \(0 \leq p < n \):

\[
D_p \cong \frac{\langle \det^{p-n} \rangle}{\langle \det^{p+1-n} \rangle}, \quad D_n = S.
\]

The category \(\text{mod}_G(\mathcal{D}X) \) is given by the quiver

\[
\hat{\mathcal{A}}A_n : \quad (0) \longleftrightarrow (1) \longleftrightarrow \cdots \longleftrightarrow (n - 1) \longleftrightarrow (n),
\]

where all the 2-cycles are zero. [L., Walther ‘19]

\(\hat{\mathcal{A}}A_n \) has finitely many indecomposable representations!
Spherical varieties

Let G be a complex reductive group and B a Borel subgroup. We say X is a spherical variety, if B acts on X with finitely many orbits.
Spherical varieties

Let G be a complex reductive group and B a Borel subgroup. We say X is a spherical variety, if B acts on X with finitely many orbits.

Examples: Flag varieties, symmetric spaces, space of $m \times n$ matrices, symmetric matrices, skew-symmetric matrices.
Spherical varieties

Let G be a complex reductive group and B a Borel subgroup. We say X is a spherical variety, if B acts on X with finitely many orbits.

Examples: Flag varieties, symmetric spaces, space of $m \times n$ matrices, symmetric matrices, skew-symmetric matrices.

Theorem (L., Walther '19)

Let X be a spherical variety of G, and \mathcal{M} a G-equivariant simple \mathcal{D}-module. Then $\Gamma(X, \mathcal{M})$ has a multiplicity-free decomposition into irreducible G-modules (i.e. an irreducible G-module appears at most once). Moreover, if $\Gamma(X, \mathcal{M}) \neq 0$ then the characteristic cycle of \mathcal{M} is also multiplicity-free.
Equivariant \mathcal{D}-modules
Example: the space of $m \times n$ matrices
Spherical varieties
Local cohomology

Spherical varieties

Let G be a complex reductive group and B a Borel subgroup. We say X is a spherical variety, if B acts on X with finitely many orbits.

Examples: Flag varieties, symmetric spaces, space of $m \times n$ matrices, symmetric matrices, skew-symmetric matrices.

Theorem (L., Walther '19)

Let X be a spherical variety of G, and \mathcal{M} a G-equivariant simple \mathcal{D}-module. Then $\Gamma(X, \mathcal{M})$ has a multiplicity-free decomposition into irreducible G-modules (i.e. an irreducible G-module appears at most once). Moreover, if $\Gamma(X, \mathcal{M}) \neq 0$ then the characteristic cycle of \mathcal{M} is also multiplicity-free.

Some formulas for characters of equivariant \mathcal{D}-modules are calculated (for some non-spherical representations as well).
Equivariant \mathcal{D}-modules
Example: the space of $m \times n$ matrices
Spherical varieties
Local cohomology

A classification result

The irreducible spherical representations have been classified by [Sato-Kimura '77] and [Kac '80].

Theorem (L., Walther '19)

Let X an irreducible G-spherical representation. Then $\text{mod}_G(\mathcal{D}_X)$ is given by a disjoint union of quivers of type $\widehat{A}_A n$, except in one case, when $X = \mathbb{C}^{4 \times 4}$ and $G = \text{Sp}_4 \times \text{GL}_4$, when the quiver is

\[
\begin{array}{c}
\beta \\
\downarrow & \downarrow \\
\alpha \\
\end{array}
\]

\[
(1) \leftrightarrow (2) \leftrightarrow (3) \leftrightarrow (4) \leftrightarrow (5)
\]

with all 2-cycles zero, and all compositions with the arrows α or β are zero.
A non-spherical example: binary cubic forms

\[X = \text{Sym}^3 \mathbb{C}^2, \ G = \text{GL}_2(\mathbb{C}). \] There are only 4 orbits, but 14 simple equivariant \(D \)-modules (stabilizers not connected).

Theorem (L., Raicu, Weyman ’19)

The quiver of the category \(\text{mod}_G(D_X) \) has a connected component

\[
\begin{array}{c}
 s \\
 \beta_1 \downarrow \alpha_1 & \beta_2 \uparrow \\
 p \\
 \beta_3 \downarrow \alpha_3 & \beta_4 \uparrow \\
 q_0 \\
 \alpha_4 \downarrow \beta_4 & \alpha_2 \uparrow \\
 d_0 \\
\end{array}
\]

with relations given by all 2-cycles and all non-diagonal compositions of two arrows.
Let Z be a subvariety of X, and M any \mathcal{O}_X-module. $\mathcal{H}_Z^0(M)$ is the sheaf of sections of M with support in Z. If M is a \mathcal{D}-module, then so is $\mathcal{H}_Z^i(M)$ for $i \geq 0$. If Z is G-stable and M is equivariant, then so is $\mathcal{H}_Z^i(M)$. A general goal is to describe the \mathcal{D}-modules $\mathcal{H}_Z^i(\mathcal{O}_X)$ for any $i \geq 0$.
Let Z be a subvariety of X, and M any \mathcal{O}_X-module. $\mathcal{H}_Z^0(M)$ is the sheaf of sections of M with support in Z.

$\mathcal{H}_Z^0(-)$ is left exact; consider its right derived functors $\mathcal{H}_Z^i(-)$ for $i \geq 0$.
Let Z be subvariety of X, and \mathcal{M} any \mathcal{O}_X-module. $\mathcal{H}_Z^0(\mathcal{M}) = \text{sheaf of sections of } M \text{ with support in } Z$.

$\mathcal{H}_Z^0(-)$ is left exact; consider its right derived functors $\mathcal{H}_Z^i(-)$ for $i \geq 0$.

If M is a \mathcal{D}-module, then so is $\mathcal{H}_Z^i(M)$. If moreover Z is G-stable and \mathcal{M} is equivariant, then so is $\mathcal{H}_Z^i(\mathcal{M})$.

A general goal: Describe the \mathcal{D}-modules $\mathcal{H}_Z^i(\mathcal{O}_X)$ for any $i \geq 0$.
Example: back to matrices

Let $X = \mathbb{C}^{m \times n}$ be the space of $m \times n$ matrices, equipped with the action of the group $G = \text{GL}_m(\mathbb{C}) \times \text{GL}_n(\mathbb{C})$, and $O_i = \text{set of matrices of rank } i$.
Example: back to matrices

\[X = \mathbb{C}^{m \times n} \] be space of \(m \times n \) matrices, equipped with the action of the \(G = \text{GL}_m(\mathbb{C}) \times \text{GL}_n(\mathbb{C}) \), and \(O_i = \) set of matrices of rank \(i \).

When \(m \neq n \), the category \(\text{mod}_G(\mathcal{D}_X) \) is semi-simple, so each \(H^i_{\mathcal{O}_t}(D_p) \) is a direct sum of \(D_0, \ldots, D_n \) (formula in [L., Raicu ’18]).
Example: back to matrices

$X = \mathbb{C}^{m \times n}$ be space of $m \times n$ matrices, equipped with the action of the $G = \text{GL}_m(\mathbb{C}) \times \text{GL}_n(\mathbb{C})$, and $O_i = \text{set of matrices of rank } i$.

When $m \neq n$, the category $\text{mod}_G(\mathcal{D}_X)$ is semi-simple, so each $H^j_{O_t}(D_p)$ is a direct sum of D_0, \ldots, D_n (formula in [L., Raicu ’18]).

In the square case $m = n$, the indecomposables of main interest:

$$Q_p := \frac{S_{\text{det}}}{\langle \det^{p+1-n} \rangle} \in \text{mod}_G(\mathcal{D}_X)$$

corresponds in rep($\widehat{\text{AA}}_n$) to

$$
\begin{array}{ccccccc}
\mathbb{C} & \xrightarrow{1} & \mathbb{C} & \xrightarrow{1} & \cdots & \xrightarrow{1} & \mathbb{C} & \xrightarrow{0} & 0 & \xrightarrow{0} & \cdots & \xrightarrow{0} & 0 \\
0 & & 0 & & 0 & & 0 & & 0 & & 0 & & 0 & \quad (p \text{ 1’s})
\end{array}
$$
Example: back to matrices

Let $X = \mathbb{C}^{m \times n}$ be the space of $m \times n$ matrices, equipped with the action of the group $G = \text{GL}_m(\mathbb{C}) \times \text{GL}_n(\mathbb{C})$, and $O_i = \text{set of matrices of rank } i$. When $m \neq n$, the category $\text{mod}_G(D_X)$ is semi-simple, so each $H^j_{O_t}(D_p)$ is a direct sum of D_0, \ldots, D_n (formula in [L., Raicu ’18]).

In the square case $m = n$, the indecomposables of main interest:

$$Q_p := \frac{S_{\det}}{\langle \det^{p+1-n} \rangle} \in \text{mod}_G(D_X)$$

corresponds in $\text{rep}(\hat{A}\hat{A}_n)$ to

$$\mathbb{C} \xleftarrow{1} \mathbb{C} \xrightarrow{1} \cdots \xrightarrow{1} \mathbb{C} \xleftarrow{0} 0 \xrightarrow{0} \cdots \xrightarrow{0} 0 \quad (p \text{ 1's})$$

Let $\text{add}(Q)$ denote the subcategory of $\text{mod}_G(D_X)$ formed of D-modules that are direct sums of $Q_0, Q_1, \ldots Q_{n-1}$.
Direct sum decomposition in square case

\[q\text{-binomial: } \binom{a}{b}_q = \frac{(1 - q^a) \cdot (1 - q^{a-1}) \cdots (1 - q^{a-b+1})}{(1 - q^b) \cdot (1 - q^{b-1}) \cdots (1 - q)} \]

Theorem (L., Raicu '18)

We have that \(H^j_{O_t}(D_p) \in \text{add}(Q) \) (with \(t < p \)). Explicitly:

\[
\sum_{j \geq 0} [H^j_{O_t}(D_p)] \cdot q^j = \sum_{s=0}^{t} [Q_s] \cdot q^{(p-t)^2} \cdot m_s(q^2),
\]

where \(m_t(q) = \binom{n-t}{p-t}_q \), and for \(s = 0, \ldots, t - 1 \)

\[
m_s(q) = \binom{n-s}{p-s}_q \cdot \binom{p-1-s}{t-s}_q - \binom{n-s-1}{p-s-1}_q \cdot \binom{p-2-s}{t-1-s}_q
\]
We also show that $H^i_{O_t}(Q_p) \in \text{add}(Q)$ and give an explicit formula. Hence, we can calculate all iterations $H^i_{O_{t_1}}(H^j_{O_{t_2}}(\cdots H^r_{O_{tr}}(D_p)\cdots))$.
We also show that $H^j_{Ot}(Q_p) \in \text{add}(Q)$ and give an explicit formula. Hence, we can calculate all iterations $H^{i_1}_{Ot_1}(H^{i_2}_{Ot_2}(\cdots H^{i_r}_{Ot_r}(D_p)\cdots))$

In particular, we determine the Lyubeznik numbers $\lambda_{i,j}(\mathcal{O}_p)$ of determinantal varieties, given by

$$H^i_{\{0\}} H^{mn-j}_{\mathcal{O}_p}(S) = E^{\oplus \lambda_{i,j}(\mathcal{O}_p)}$$

This answers a question of M. Hochster.
We also show that $H^i_{\mathcal{O}_t}(Q_p) \in \text{add}(Q)$ and give an explicit formula. Hence, we can calculate all iterations $H^{i_1}_{\mathcal{O}_{t_1}}(H^{i_2}_{\mathcal{O}_{t_2}}(\cdots H^{i_r}_{\mathcal{O}_{t_r}}(D_p)\cdots))$

In particular, we determine the Lyubeznik numbers $\lambda_{i,j}(\mathcal{O}_p)$ of determinantal varieties, given by

$$H^i_{\{0\}} H^{mn-j}_{\mathcal{O}_p}(S) = E \bigoplus \lambda_{i,j}(\mathcal{O}_p)$$

This answers a question of M. Hochster.

The Lyubeznik numbers are truly invariants of the (projective) determinantal varieties themselves, i.e. they do not depend on the choice of embedding into the projective space.
Lyubeznik numbers in the square case

Theorem (L., Raicu '18)

We have \(\sum \lambda_{i,j}(\overline{O}_{n-1}) \cdot q^i \cdot w^j = (q \cdot w)^{n^2-1} \) and for \(0 \leq p \leq n - 2 \) we have

\[
\sum_{i,j \geq 0} \lambda_{i,j}(\overline{O}_p) \cdot q^i \cdot w^j = \sum_{s=0}^{p} q^{s^2+2s} \cdot \binom{n-1}{s} \cdot w^{p^2+2p+s(2n-2p-2)} \cdot \binom{n-2-s}{p-s} \cdot w^2
\]

Similar methods were applied to describe local cohomology and Lyubeznik numbers for other spaces of interest.